オーストラリアの量子研究者たちは、コンピューティングの汎用ゲートの1つであるフレドキンゲートがビットではなく量子ビットで動作することを実証した。
フレドキンゲート(Wikipediaで説明されている)は、AND、OR、XOR、NOT関数を構築するために使用できる可逆的な3ビットゲートです。3ビットのうち最初のビットが1の場合、最後の2ビットが入れ替わります(0から1、または1から0)。最初のビットが0の場合、入れ替わりません(制御SWAP関数とも呼ばれます)。
オーストラリアのグリフィス大学とクイーンズランド大学の研究者らが行った実験では、ゲートは制御の値に基づいて2つの量子ビットの量子状態を交換した。
Fredkin ゲートの普遍性こそが、他の演算の構成要素として量子コンピューティングの研究者にとって魅力的な理由です。
Science Advancesのオープンアクセス論文で指摘されているように、フレドキン ゲートは量子コンピューティング、エラー訂正、暗号化、測定に役立ちます。
メーカーの皆さん、ブレッドボード設計はこちらです:量子フレドキンゲート。画像:Science Advances
たとえば、量子暗号では、2 つの量子ビットのセットを直接比較することで、2 つのデジタル署名が同じであることを確認するのに役立ちます。
研究者たちは、これまでの実験よりも少ないリソースでゲートを作成したと述べています。回路を作成するために5つの論理演算を行う代わりに、光子エンタングルメントを用いて「制御されたSWAP演算を直接実装」したのです。また、これは高忠実度の量子演算でもあります。これまでの試みでは「複数の確率ゲート」を連結する必要があり、成功率が低下していたためです。
グリフィス大学量子ダイナミクスセンターのRaj Patel博士は、大学のプレスリリースで次のように述べています。「小さなレンガを積み重ねて巨大な壁を作るのと同じように、大規模な量子回路を動作させるには非常に多くの論理ゲートが必要です。しかし、より大きなレンガを使用すれば、同じ壁をはるかに少ないレンガで構築できます。」
「私たちの実験では、小さな論理ゲートを使わずに、より直接的な方法でより大きな量子回路を構築する方法を実証しました。」®